# Birzeit University <br> Mathematics Department <br> Math234 <br> Second Exam (KEY) 

Instructor: Dr. Ala Talahmeh
Name:
First Summer Semester 2020

Section:(3)
Date: 04/07/2020

Exercise 1 [40 marks]. Answer by true or false.

1. (F) If the set $\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\}$ spans $P_{4}$, then $k=4$.
2. (F) If $u, v, w$ are nonzero vectors in $\mathbb{R}^{2}$, then $w \in \operatorname{span}(u, v)$.
3. (T) If $A$ is a $4 \times 4$ matrix with $a_{2}+a_{4}=0$, then $N(A) \neq\{0\}$.
4. (T) If the vectors $u_{1}, u_{2}, u_{3}, u_{4}$ span $\mathbb{R}^{2 \times 2}$, then they are linearly independent.
5. (F) The coordinate vector of $q(x)=4+6 x$ with respect to the basis $[2 x, 2]$ is $(2,3)^{T}$.
6. (T) The transition matrix of two basis is nonsingular.
7. (T) If $\operatorname{dim} V=n<+\infty$, then an $n$ linearly independent set of vectors in $V$ is a basis for $V$.
8. (T) Let $W=\left\{(x, y, x+y+2 z)^{T}: x, y, z \in \mathbb{R}\right\}$, then $\left\{(1,0,1)^{T},(0,0,1)^{T},(0,1,1)^{T}\right\}$ is a basis for $W$.
9. (T) Let $S=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and suppose that $v_{1}=v_{2}+v_{3}, v_{3}=v_{2}-v_{4}$, then $S=\operatorname{Span}\left\{v_{3}, v_{4}\right\}$.
10. (F) Let $S=\left\{a x^{2}+a x: a \in \mathbb{R}\right\}$, then $\left\{x^{2}, x\right\}$ is a basis for $S$.
11. (T) If $f_{1}, \ldots . f_{n}$ are linearly dependent, then $\operatorname{Wronskian}\left(f_{1}, \ldots . f_{n}\right)=0$.
12. (F) The set $S=\{(x, y): y=x+3\}$ is a subspace of $\mathbb{R}^{2}$.
13. (T) The dimension of the subspace $W=\left\{A \in \mathbb{R}^{2 \times 2}: A\right.$ is symmetric $\}$ is 3 .
14. (F) If $V$ is a vector space with $\operatorname{dim}(V)=4$ and $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq V$, then $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=V$.
15. (F) If $A$ is a singular $n \times n$ matrix, then $\operatorname{rank}(A)=n$.
16. (T) If $S$ is a subspace of a vector space $V$, then $S$ is a vector space.
17. (T) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ are vectors in a vector space $V$ and $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly dependent.
18. (F) If $A$ is a $3 \times 3$ matrix and $\operatorname{rank}(A)=2$, then $A$ is nonsingular.
19. (T) If $A$ is an $m \times n$ matrix, then $A$ and $A^{T}$ have the same rank.
20. (T) If $A$ is an $3 \times 4$ matrix, then $\operatorname{rank}(A) \leq 3$.

Exercise 2 [20 marks]. Circle the correct answer.

1. let $S=\left\{p \in P_{3}: p(0)=0\right\}$. One of the following is a basis for $S$.
(a) $\left\{1, x, x^{2}\right\}$
(b) $\left\{x, x^{2}\right\}$
(c) $\left\{x^{2}+x\right\}$
(d) $\left\{x^{2}+1\right\}$
2. Let $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, then
(a) $A$ is in REF
(b) $\operatorname{nullity}(A)=2$
(c) $\operatorname{rank}(A)=2$
(d) $\operatorname{det}(A) \neq 0$
3. The vectors $\{2, x, \sin x\}$ in $C[0,2 \pi]$ are
(a) Linearly independent
(b) Linearly dependent
(c) A basis for $C[0,2 \pi]$
(d) A spanning set for $C[0,2 \pi]$
4. Consider the ordered basis $E=\left\{e_{1}, e_{1}-e_{2}\right\}$ for $\mathbb{R}^{2}$. If $[v]_{E}=(1,-1)^{T}$, then $v=$
(a) $-e_{2}$
(b) $2 e_{1}+e_{2}$
(c) $e_{1}+e_{2}$
(d) $(0,1)^{T}$
5. If the reduced row echelon form of $A$ is $\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 0 & 0\end{array}\right]$ and $a_{2}=(2,2)^{T}$, then $A=$
(a) $\left[\begin{array}{lll}4 & 2 & 2 \\ 4 & 2 & 2\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 2 & 2\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 2 & 0\end{array}\right]$
6. The transition matrix from the basis $E=[1,-x]$ to the basis $F=[-1, x-1]$ of $P_{2}$ is
(a) $\left[\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right]$
(d) $\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$
7. If $A=\left[\begin{array}{cccc}1 & -3 & 2 & 3 \\ -6 & 6 & -4 & -5\end{array}\right]$, then
(a) $\operatorname{rank}(A)=1$, $\operatorname{nullity}(A)=3$.
(b) $\operatorname{rank}(A)=3$, $\operatorname{nullity}(A)=1$.
(c) $\operatorname{rank}(A)=4, \operatorname{nullity}(A)=0$.
(d) $\operatorname{rank}(A)=\operatorname{nullity}(A)=2$.
8. The dimension of the vector space spanned by $\left\{1-x-x^{2}, 1+x+x^{2}, 2-x, 2 x-4\right\}$ is
(a) 1
(b) 2
(c) 3
(d) 4
9. One of the following sets is a subspace of $P_{4}$
(a) $\left\{f(x) \in P_{4}: f(0)=1\right\}$
(b) $\left\{f(x) \in P_{4}: f(1)=1\right\}$
(c) $\left\{f(x) \in P_{4}: f(1)=0\right\}$
(d) $\left\{f(x) \in P_{4}: f(0)=0, f^{\prime \prime \prime}(0)=6\right\}$
10. If $A$ is a $4 \times 3$ matrix such that $N(A)=\{0\}$, and $b=\left[\begin{array}{l}0 \\ 3 \\ 2 \\ 1\end{array}\right]$, then
(a) It is possible that $A x=b$ has infinitely many solutions
(b) The system $A x=b$ has exactly one solution.
(c) The system $A x=b$ has at most one solution.
(d) The system $A x=b$ has no solution

Exercise 3 [ 8 marks]. Let $V=\mathbb{R}^{2 \times 2}$ be the vector space of all $2 \times 2$ matrices. Let $W_{1}$ be the set of matrices of the form $\left[\begin{array}{cc}x & -x \\ y & z\end{array}\right]$, and $W_{2}$ set of matrices of the form $\left[\begin{array}{cc}a & b \\ -a & c\end{array}\right]$.
a. Find $W_{1} \cap W_{2}$.
b. Find a basis and dimention of $W_{1} \cap W_{2}$.

Exercise 4 [ 12 marks]. Let $V$ be the vector space of all functions from $\mathbb{R}$ into $\mathbb{R}$; let $V_{e}$ be the subset of even functions and $V_{o}$ be the subset of odd functions.
a. Prove that $V_{e}$ and $V_{o}$ are subspaces of $V$. (Do only one case).
b. Prove that $V_{e} \cap V_{o}=\{0\}$.
c. Prove that $V=V_{e}+V_{o}$.

Exercise \#3:

$$
\begin{aligned}
& V_{e}=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(-x)=f(x)\} \\
& V_{0}=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(-x)=-f(x)\}
\end{aligned}
$$

(a) $V_{e}$ is a subspace ( $V_{0}$ is similar).
(i) $O(-x)=O(x) \Rightarrow 0 \in V_{e} \quad \therefore V_{e} \neq \phi$.
(ii) Let $f, g \in V_{e}$, then $f(-x)=f(x), g(-x)=g(x)$.

$$
\begin{aligned}
&(f+g)(-x)=f(-x)+g(-x) \\
&=f(x)+g(x) \\
&=(f+g)(x) \\
& \therefore f+g \in V_{e}
\end{aligned}
$$

(iii) $\forall f \in V e, \alpha \in \mathbb{R}$, we have

$$
\begin{aligned}
&(\alpha f)(-x)=\alpha f(-x) \\
&=\alpha f(x) \quad \sin u \quad f \in V_{e} \\
&=(\alpha f)(x) \\
& \therefore \alpha f \in V_{e}
\end{aligned}
$$

(b) $\quad V_{e} \cap V_{0}=\{0\}$.
et $f \in V_{e} \cap V_{0}$, then $f_{\in} V_{e}$ and $f \in V_{0}$

$$
\begin{aligned}
& \Rightarrow f(-x)=f(x) \text { and } f(-x)=-f(x) \\
& \Rightarrow 2 f(x)=0 \quad \Rightarrow f(x)=0
\end{aligned}
$$

(c) $\quad V=V_{e}+V_{0}$
let $f \in V$, then $\left.f(x)=\frac{(f(x)+f(-x)}{2}\right)+\left(\frac{f(x)-f(-x)}{2}\right)$
Exercise \#4.

$$
\begin{aligned}
& W_{1}=\left\{A \in \mathbb{R}^{2 x^{2}}: A=\left[\begin{array}{cc}
x & -x \\
y & z
\end{array}\right]\right\} \\
& W_{2}=\left\{B \in \mathbb{R}^{2 x^{2}}: B=\left[\begin{array}{cc}
a & b \\
-a & c
\end{array}\right]\right\}
\end{aligned}
$$

a) $W_{1} \cap W_{2}=\left\{C \in \mathbb{R}^{2 x^{2}}: C=\left[\begin{array}{cc}\alpha & -\alpha \\ -\alpha & \beta\end{array}\right]\right\}$
b)

$$
\begin{aligned}
& W_{1} \cap W_{2}=\left\{C \in \mathbb{R}^{2 \times 2}: C=\alpha\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]\right. \\
&\left.+\beta\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
&=\operatorname{spun}\{\underbrace{\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]}_{\text {lin. indep cheek! }}\}
\end{aligned}
$$

A basis for $W_{1} \cap W_{2}$ is

$$
\begin{aligned}
& \left\{\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
& \operatorname{dim} W_{1} \cap W_{2}=2
\end{aligned}
$$

