Birzeit University Mathematics Department Math234 Second Exam (KEY)

Instructor: Dr. Ala Talahmeh Name:..... Section:(3) First Summer Semester 2020 Number:..... Date: 04/07/2020

Exercise 1 [40 marks]. Answer by true or false.

- 1. (F) If the set $\{v_1, v_2, ..., v_k\}$ spans P_4 , then k = 4.
- 2. (F) If u, v, w are nonzero vectors in \mathbb{R}^2 , then $w \in span(u, v)$.
- 3. (T) If A is a 4×4 matrix with $a_2 + a_4 = 0$, then $N(A) \neq \{0\}$.
- 4. (T) If the vectors u_1, u_2, u_3, u_4 span $\mathbb{R}^{2 \times 2}$, then they are linearly independent.
- 5. (F) The coordinate vector of q(x) = 4 + 6x with respect to the basis [2x, 2] is $(2, 3)^T$.
- 6. (T) The transition matrix of two basis is nonsingular.
- 7. (T) If $\dim V = n < +\infty$, then an *n* linearly independent set of vectors in V is a basis for V.
- 8. **(T)** Let $W = \{(x, y, x + y + 2z)^T : x, y, z \in \mathbb{R}\}$, then $\{(1, 0, 1)^T, (0, 0, 1)^T, (0, 1, 1)^T\}$ is a basis for W.
- 9. (T) Let $S = Span \{v_1, v_2, v_3, v_4\}$ and suppose that $v_1 = v_2 + v_3$, $v_3 = v_2 v_4$, then $S = Span \{v_3, v_4\}$.
- 10. (F) Let $S = \{ax^2 + ax : a \in \mathbb{R}\}$, then $\{x^2, x\}$ is a basis for S.
- 11. (T) If $f_1, ..., f_n$ are linearly dependent, then Wronskian $(f_1, ..., f_n) = 0$.
- 12. (F) The set $S = \{(x, y) : y = x + 3\}$ is a subspace of \mathbb{R}^2 .
- 13. **(T)** The dimension of the subspace $W = \{A \in \mathbb{R}^{2 \times 2} : A \text{ is symmetric}\}$ is 3.
- 14. (F) If V is a vector space with dim(V) = 4 and $\{v_1, v_2, v_3, v_4\} \subseteq V$, then $span\{v_1, v_2, v_3, v_4\} = V$.
- 15. (F) If A is a singular $n \times n$ matrix, then rank(A) = n.
- 16. (T) If S is a subspace of a vector space V, then S is a vector space.
- 17. (T) If $\{v_1, v_2, v_3\}$ are vectors in a vector space V and Span $\{v_1, v_2\} = Span \{v_1, v_2, v_3\}$, then $\{v_1, v_2, v_3\}$ are linearly dependent.
- 18. (F) If A is a 3×3 matrix and rank(A) = 2, then A is nonsingular.
- 19. (T) If A is an $m \times n$ matrix, then A and A^T have the same rank.
- 20. (T) If A is an 3×4 matrix, then $rank(A) \leq 3$.

Exercise 2 [20 marks]. Circle the correct answer.

- 1. let $S = \{p \in P_3 : p(0) = 0\}$. One of the following is a basis for S.
- (a) $\{1, x, x^2\}$ (b) $\{x, x^2\}$ (c) $\{x^2 + x\}$ (d) $\{x^2 + 1\}$ 2. Let $A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then (a) A is in REF (b) nullity(A)=2 (c) rank(A)=2 (d) det(A) $\neq 0$ 3. The vectors $\{2, x, \sin x\}$ in $C[0, 2\pi]$ are (a) Linearly independent
 - (b) Linearly dependent
 - (c) A basis for $C[0, 2\pi]$
 - (d) A spanning set for $C[0, 2\pi]$
- 4. Consider the ordered basis $E = \{e_1, e_1 e_2\}$ for \mathbb{R}^2 . If $[v]_E = (1, -1)^T$, then v =
 - (a) $-e_2$
 - (b) $2e_1 + e_2$
 - (c) $e_1 + e_2$
 - (d) $(0,1)^T$

5. If the reduced row echelon form of A is $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ and $a_2 = (2,2)^T$, then A =

(a)	$\left[\begin{array}{c}4\\4\end{array}\right]$	$\frac{2}{2}$	$\begin{bmatrix} 2\\2 \end{bmatrix}$
(b)	$\left[\begin{array}{c}1\\1\end{array}\right]$	$\frac{2}{2}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
(c)	$\left[\begin{array}{c}1\\1\end{array}\right]$	$\frac{2}{2}$	$\begin{bmatrix} 2\\2 \end{bmatrix}$

- 6. The transition matrix from the basis E = [1, -x] to the basis F = [-1, x 1] of P_2 is
- (a) $\begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ 7. If $A = \begin{bmatrix} 1 & -3 & 2 & 3 \\ -6 & 6 & -4 & -5 \end{bmatrix}$, then (a) rank(A)=1, nullity(A)=3. (b) rank(A)=3, nullity(A)=1.
 - (c) $\operatorname{rank}(A) = 4$, $\operatorname{nullity}(A) = 0$.
 - (d) $\operatorname{rank}(A) = \operatorname{nullity}(A) = 2.$

8. The dimension of the vector space spanned by $\{1 - x - x^2, 1 + x + x^2, 2 - x, 2x - 4\}$ is

- (a) 1
- **(b)** 2
- (c) 3
- (d) 4

9. One of the following sets is a subspace of P_4

(a) $\{f(x) \in P_4 : f(0) = 1\}$ (b) $\{f(x) \in P_4 : f(1) = 1\}$ (c) $\{f(x) \in P_4 : f(1) = 0\}$ (d) $\{f(x) \in P_4 : f(0) = 0, f'''(0) = 6\}$

10. If A is a 4×3 matrix such that $N(A) = \{0\}$, and $b = \begin{bmatrix} 0\\3\\2\\1 \end{bmatrix}$, then

- (a) It is possible that Ax = b has infinitely many solutions
- (b) The system Ax = b has exactly one solution.
- (c) The system Ax = b has at most one solution.
- (d) The system Ax = b has no solution

Exercise 3 [8 marks]. Let $V = \mathbb{R}^{2 \times 2}$ be the vector space of all 2×2 matrices. Let W_1 be the set of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$, and W_2 set of matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$.

- a. Find $W_1 \cap W_2$.
- b. Find a basis and dimension of $W_1 \cap W_2$.

Exercise 4 [12 marks]. Let V be the vector space of all functions from \mathbb{R} into \mathbb{R} ; let V_e be the subset of even functions and V_o be the subset of odd functions.

- a. Prove that V_e and V_o are subspaces of V. (Do only one case).
- b. Prove that $V_e \cap V_o = \{0\}$.
- c. Prove that $V = V_e + V_o$.

(c)
$$V = V_e + V_o$$

Let $f \in V$, then $f(x) = (f(x) + f(-x)) + (f(x) - f(-x)) = (V_e + V_o) + (V_e + V_e + V_e) + (V_e + V_e) + (V_e + V_e) + (V_e + V_e + V_e) + (V_e + V_e + V_e) + (V_e + V_e$

 $\frac{3}{2} = \frac{3}{2} = \frac{3}$

a)
$$W_1 \cap W_2 = \begin{cases} C \in \mathbb{R}^{2\times 2} : C = x \begin{bmatrix} 1 - 0 \\ -1 & 0 \end{bmatrix}$$

b) $W_1 \cap W_2 = \begin{cases} C \in \mathbb{R}^{2\times 2} : C = x \begin{bmatrix} -1 & 0 \end{bmatrix} \\ +\beta \begin{bmatrix} 0 & 0 \end{bmatrix}^2 \\ \vdots & \vdots \end{cases}$

$$= Span \begin{cases} \begin{bmatrix} 1 - 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}^2 \\ \vdots & \vdots \end{bmatrix}$$

din indep checks
A basis for $W_1 \cap W_2$ is

$$\begin{cases} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}^2 \\ \vdots & \vdots \end{cases}$$

